
Multi-Dimensional Service Compositions

Software as a ServicePervasive Computing

Open-world Assumption

Internet as an Aggregator

Allows for complex applications that mix data, logic, and
presentation from different sources

Ad-hoc
Development

L. Baresi, E. Di Nitto, S. Guinea
Politecnico di Milano

{baresi | dinitto | guinea}@elet.polimi.it

Future Work

S. Dustdar
Vienna University of Technology

dustdar@infosys.tuwien.ac.at

Internet of Things

Workflow-based
 Development

Mashup-based
 Development

Applications should be robust with respect to evolving
scenarios and evolving requirements
Situational applications take advantage of the context of
execution

Simple and Lightweight model

Accessible to anyone through
Internet technology

No need for installation and
easy to maintain

Internet-enabled things are
everywhere
More than 10000 things per
person in the next 10 years

RFID, Sensors, GPS

Formally defined
orchestrations

Centralized
execution
environment

Do-it-yourself approach

For example,
BPEL for Web
Services

Web 2.0 development for end-users

Yahoo pipes, MS Popfly, Mashlight

Wine Transportation Example

Temperature, light, and humidity sensors are needed
GPS used to track location

Our Vision

Acknowledge that the problem
is multi-dimensional

Application

fun
cti

on
ali

ty

security

GUI

data

transactionality

context

Component

Service

Aggregated
Service

Physical
Device

Software
Component

Business
Element

Utility

Management
Interface

0,1

Adopt a model-based
approach

Service abstraction

Provide appropriate
abstractions

Identify key cross-cutting
concerns

Treat things and cross-cutting
concerns as key players in the
model

Two levels of abstraction:

Physical level
Service level

Services as manageable
and configurable entities

Black-, grey-, and white-box
entities need management
interfaces
Use instrumentation/AOP as
enabling technology

Refine conceptual model behind the idea of service

Further research cross-cutting concerns as first-class
composable entities

Define computational model compatible with the
defined abstractions
Implement infrastructure that allows for run-time adaptation through
management and customization

Have professional designers develop
the application by hard-coding the
interactions amongst the parts
Rely entirely on the developer's
knowledge of the underlying
technologies and APIs

